Tuesday, February 15, 2022

Networking....It's All About The Business Case

 


Deciding on the type of network technology and typology has always been important but, in today’s connected world, it’s become business-critical.

The choice between SDWAN and MPLS is not a simple technology discussion − the needs of the business must be properly understood to make the right decision.
To take advantage of FREE assistance to engineer and design a SDWAN solution for your organization’s network requirements....including a comparison of Best-In-Class providers....simply click on this link and ask. It’s as easy as 1, 2, 3.

Labels: , , , , , , ,

Monday, March 08, 2021

Will MPLS Be Replaced By SDWAN? - VIDEO

 Will SD-WAN ever replace MPLS? It's a question that's constantly being debated. Tune into this episode of Guys in Orange to take a closer look at the features of MPLS and SD-WAN that make each technology a valid solution depending on the situation.


To take advantage of FREE assistance to engineer and design a SDWAN solution for your organization’s network requirements....including a comparison of Best-In-Class providers....simply click on this link and ask. It’s as easy as 1, 2, 3.

Labels: , ,

Monday, August 05, 2019

Everything You Need To Know About MPLS (Mult Protocol Label Switching)

Historically, tag switching ( now called LABEL) was first proposed as a way to move IP packets more quickly than was possible with conventional routing. But, soon after implementations, it became apparent that any increase in speed was very slight. What really allowed MPLS to grow as an infrastructure technology was that it could provide new IP based services such as VPN's, Traffic Engineering ( TE) etc.

The MPLS architecture separates the control information for packets required for packet transfer itself; that is, it separates the control and data planes. The data plane is used for the transport of packets (or label swapping algorithm), and the control plane is analogous to routing information (for example, the location to which to send the packet). This capability is programmed into hardware by the control plane. This separation permits applications to be developed and deployed in a scalable and flexible manner. Examples of applications that are facilitated by MPLS technology include the following......

MPLS QoS, BGP VPNs Border Gateway Protocol (BGP), Traffic engineering Traffic engineering ( enables one to control traffic routing via constraint-based routing), Multicast routing Protocol Independent Multicast (PIM), Pseudowires [These can be used to evolve legacy networks and services, such as Frame Relay, ATM, PPP, High-Level Data Link Control (HDLC), and Ethernet], Generalized MPLS (GMPLS) etc.

Services offered by Service Providers ( SP's) may include the following.....

* Layer 2 VPNs

* Layer 3 VPNs

* Remote Access and IPSec Integration with MPLS VPNs

* MPLS Security

* Traffic Engineering

* Quality of Service

* Multicast and NGNs ( Next Generation Networks)

* IPv6 over MPLS

MPLS models adopted by service providers (SP) of broadband services depend on the services offered and also on the models adopted according to customer demands. The services provided have changed significantly through the last few years as technology has progressed. For example, many wholesale providers who offered ATM as access links now have moved on to Gigabit Ethernet.

For example, two of the most common braodband SP's would be the following.....

* Retail Provider - Any provider thats sells services to an end-user which can be business or residential. Usually they would lease bandwidth from a wholesale provider.

* Wholesale Povider - Any operator that sells services to other network operators. In context of the current broadband world, the wholesaler is usually whoever owns the subscriber plant ( wires, cables etc.)

In between the subscriber and their "ISP" is the wholesale provider who owns actually owns and operates the access network, for e.g, DSL, Cable, Ethernet etc. Of course, for an IP network, these are just different types of access.

Several applications that are facilitated by the implementation of MPLS include....

* MPLS QoS - Quality of service mechanisms, for e.g, differentiated service, which enables the creation of LSPs with guaranteed bandwidth.

* Layer 3 VPN - Uses BGP in the service provider's network with IP routing protocols or static routing between the service provider and the customer. BGP is used to exchange the FEC-label binding.

* Traffic engineering - Uses extensions of IS-IS or OSPF to distribute attributes in the network. Traffic engineering enables you to control traffic routing and thus optimize network utilization.

* Multicast routing via PIM - The protocol used to create FEC tables; extensions of version 2 of the PIM protocol are used to exchange FEC label binding.

* Layer 2 VPN - Can be created via a Layer 2 circuit over MPLS. Layer 2 VPNs use Layer 2 transport as a building block.

Of course, features such as Security and Metro Ethernet are part of the MPLS architecture also.

Architectural Components and choices for SP's.......

* Scaling MPLS VPNs to Multi-AS, Multi-Provider, and Hierarchical Networks:

* Inter-AS VPNs: The 3 basic models discussed in RFC2547bis for Inter-AS connectivity are as follows:

- Back-to-back VPN connectivity between ASBRs

- VPNv4 exchange of routes and peering between ASBRs

- IPv4 exchange of routes and peering between ASBR's

All three above models focus on propagating VPN routes from one AS to the other AS. The first model is a simple one in which the ASBRs connect back to back via logical circuits or VLANs one per VRF. The back-to-back connections enable VPN connectivity and the exchange of routes between ASBRs on a per-VPN basis. For example, if ASBR1 and 2 need to exchange routes for 10 VPNs, 10 logical circuits exist between ASBR1 and ASBR2one for each VPN.

* Carrier Supporting Carrier.....

Another method of scaling MPLS VPNs is to create hierarchical VPNs. Consider a national or international carrier that is selling a VPN service to smaller stub carriers. The smaller stub carriers might in turn be selling another MPLS VPN service to end users (enterprises). By nesting stub carrier VPNs within the core or national carrier VPN, a hierarchical VPN can be built. With the CSC mode described in RFC 2547bis, the stub carrier VPNs and their routes do not show up in the core carrieronly the stub carrier IGP routes are part of the core carrier VPN. So, the core carrier does not need to learn or understand end user routes because the end user of the core carrier is the stub carrier. The core carrier needs only to provide VPN connectivity so that the core carrier's CEs (ironically, they are stub carrier PEs) are reachable. These CEs are called CSCCEs, whereas the PE that connects to the stub carrier and has MPLS enabled on the PE-CE link is called the CSCPE.

* Deployment Guideline considerations will involve the following summary guideline.....

Centralizing address translation makes keeping track of address assignment easier. Multiple NAT PEs might be required for load balancing. If this is the case, make sure public address pools do not overlap. One of the possible disadvantages to centralizing is the amount of redundancy that can be achieved by replication. For example, in a noncentralized environment, one gateway/server failure can result in an outage of only that VPN's service. However, in a centralized environment, a single gateway/shared PE failure can affect multiple VPNs. This drawback can be easily overcome by having multiple PEs that serve as shared gateways, which provide services to the same VPNs. So, you can provide redundancy with shared gateways.

If VPNs that use overlapping private address space need to access a shared services segment, make sure that private address space is translated somewhere in the path.

NAT impacts CPU utilization to a degree. Some protocols are more CPU-intensive than others. Therefore, the type of translation being performed could have significant performance impact. The impact is less for newer particle-based routers and more powerful routers.

As the number of translation entries increases, the throughput in terms of packets per second (PPS) decreases. The effect is negligible for less than 10,000 translation table entries.

The rate at which a router can add a new translation table entry decreases as the number of entries in the translation table increases.

As the number of translation entries in the translation table increases, the amount of memory used increases.

In addition to the above, there must be considerations regarding the following tools and policies.....

* Management, Provisioning, and Troubleshooting

* Equipment Scalability Versus Network Scalability

Finally, the basic arichitecture and mode of service will probably depend on customer demand and SP's commitment to deliver the same.

Here is a small list of some of the things that customers might want....

* More service selections
* Better quality
* Ease of migration
* Ease of deployment
* Ease of maintenance
* Lower cost
* Fewer hassles

Service providers want all of the above, plus......

* High-margin accounts
* Rapid recovery
* No loss of service
* 99.99999% reliability

Enterprises want.......

* A simpler, easier network to manage

Enterprise networks range in consistency from very stable to constantly changing. Companies on growth trends are building new facilities and acquiring other businesses. They want ease of intermigration and implementation. Changes must be ably employed within their limited maintenance windows. Their data centers must run flawlessly.

The above information ... if it hasn't made your eyes go crossed ... should give you everything you ver need to know about MPLS.

But if you need more ...... as in help to reduce your time, effort, cost, and frustration in finding the right MPLS solution for your network application(s) ..... I recommend using the no cost assistance available to you here:


Labels: , , ,

Friday, July 19, 2019

What You Need To Know About A MPLS Network

There's no one "MPLS Service". A lot of what you get will depend how the service provider has Engineered and built their core network. Bear in mind that many carriers don't own the whole network, but will piece together a service from other carriers networks, or will interconnect with other carriers to extend their reach.

Cell-mode MPLS was mentioned: basically this is ATM which has been retro-fitted with MPLS. Be careful with this for VoIP applications because it can use bandwidth very inefficiently.

MPLS can support QoS, but many services aren't engineered with this, or only with very basic prioritisation. Also the services are very often structured to reduce the potential complexity and to ensure the network can cope. Bear in mind a typical MPLS router can only carry a percentage of "high-priority, realtime" traffic. If everyone sends all their data as high priority then the benefit is lost, and the network may suffer. Usually QoS is provided as a small number of service classes, typically 3 or 4.

The biggest bottleneck in any such service is normally the tail circuit to each of your premises. If you move from a T1 mesh to a MPLS service then you will likely find that some sites need more bandwidth than others. Tracking the requirement for this bandwidth is usually your problem, although the service provides may give you some reporting tools to assist with this. I would avoid service providers who cannot offer this as it will make it very difficult for you to manage your bandwidths.

If you factor in multiple service classes then your management of these tail circuits gets more complex as you no only have to work out how much bandwidth is required for each tail circuit, but how much of it should be reserved for each service class.

Regarding resilience, within the service providers core, the service is normally highly resilient to failures. However, when failures do occur, very often (depending on how the service is engineered) the rerouting can take a second or two. During this network reconvergance you will lose packets. Depending on the protocol your traffic uses this can be unimportant or devastating. For instance, some VPN and VoIP services don't survive this well.

Normally resilience is not automatically provided all the way to the customer. Typically you will have one tail circuit and one router at each site. If either fails (or if the Service provider's PE router has problems) you will lose service to the site, totally.

If this is an issue, you need to factor in dual connections. There's multiple ways of doing this, and different service providers will offer different options. Make sure you get your Network Engineer involved as the devil is in the detail here, and some options which sound like they provide a fantastic level of resilience may not be as good as they sound, depending on how your internal network is configured.

And, of course, the key to all of this is SLAs: what do they offer? What happens if they break them? How do they report them to you?

Generally speaking, MPLS services are a great way to run a multi-site data network including VoIP services. I have seen many carriers and their customers doing this successfully for years.

Strictly speaking MPLS does not provide QoS. QoS is done by prioritising traffic, and most IP routers, even those on the backbone of the Internet, can do this. The difference is whether they are configured to do this or not. In an MPLS network MPLS is provided by standard router features. MPLS technology (specifically Traffic Engineering) gives the carrier better control over how this traffic is prioritised and routed (and restored in case of network fault). All this does is give them the confidence to support SLAs.

As I mentioned, "QoS" is provided as a set of "service classes". Typically these are things like "real-time", "high-priority" and "everything else". Mapping actual traffic into these classes can be done in a few different ways, but this is largely up to you to control. For instance, you could quite easily put web-browsing traffic into "real time" although this would normally be a dumb thing to do.

I would suggest the case for MPLS in terms of performance, cost and continuity against 'traditional' or 'legacy' data networks is now pretty robust, i.e. MPLS provides significant advantages in all 3 areas.

The key considerations when migrating include provider selection, access media (e.g. using Ethernet rather than SDH/SONET), the decision on procuring a managed or unmanaged service (often called wires-only) and the providers ability to map their CoS/QoS to the applications you need to support. This is especially important if you are operating any proprietary applications.

There is also an increasing trend to use WAN Optimisation/application management solutions either as a value added service from the provider or from an alternative integrator or indeed doing it in house. This is important say for voice or applications such as CITRIX.

MPLS providers also now offer a whole suite of value added services such as integrated internet, managed network based firewalls and remote user support. If these are important to you make sure the providers demonstrate how this is achieved.

In selecting your provider ensure they have good geographic coverage in your areas and experience within you market segment. I always recommend taking up 3 references. Equally I think it is wise to understand how important a client you will be to the provider; it's all well and good using the market leader (say according to Gartner) but you'll often get a better service from a provider who values and really wants your business.

For FREE assistance designing the right MPLS configuration for your network .... AND sourcing the most cost effective provider ..... take advantage of the help available via:

MPLS Networks

Labels: , , ,

Monday, July 15, 2019

Moving To MPLS Network Architecture From WAN Architecture

You're tasked with investigating if moving your company's network from a point-to-point T1 WAN architecture to a MPLS architecture makes business sense.

The easy answer here is yes.

But .... why?

In looking at changing your architecture from Point to Point to an MPLS type of network I suggest starting with the business requirements and tying your network requirements to the business needs. In this manner, you'll have clear business outcomes which you can negotiate back with you're business when you start getting the cost vs benefits discussion in developing your business case for investment.

A robust Total Cost of Ownership model will be needed to understand what the TCO will be gonig forwards. Also, I'd suggest developing a strong understanding of the costs of doing nothing and also the potential savings or new revenue opportunities for your business so you can develop a Net Present Value (NPV) of your network options.

I would also recommend looking at the interfaces you're looking to support in the network. MPLS does enable you to have a common protocol across all your networks and you can effectively establish an MPLS Cross Connect in your network. This will rely on how your local service providers will provide MPLS services to you, if at all. So you would most likely need to purchase either point to point or point to multipoint based transmission services from your provider. We're seeing that many enterprises and service providers are heading towards ethernet ubiquity as a service interface and then offering multiple services ontop of the ethernet interface.

VoIP works well across an MPLS type of network, however it does depend on the services that you purchase off your service provider. As you're looking at MPLS, then I assume that you're looking at buying straight transmission services and then you'll use MPLS to aggregrate traffic into your WAN links. Hence, you're business case is going to be driven by arbitrage opportunities so capture as much traffic as possible onto your network and apply QoS at the edge.

From a QoS perspective, ensure that you can also apply policing to the traffic that goes onto your WAN traffic. I recommend applying Heirarchical QoS as this will enable you to dynamically share the bandwidth in your WAN links.

As you can tell, there are lots of issues and questions that need to be addressed so I'd suggest working closely with some trusted partners and driving towards an outcome based business drivers and commercial outcomes.

We have worked with many customers that have migrated to MPLS from old school point to point. There are a few reasons our customers did this, but let me assure you the #1 reason was cost. A good competitive carrier will offer an MPLS solution that is sometimes less costly than the old point to point type solution ..... with most of the same or more functionality.

But there are some factors:

1. If the point to points are crossing state or lata boundaries ..... or are fairly separated by miles .... you should enjoy considerable savings.

2. If you get a carrier that bundles MPLS with an Integrated Access type solution you will save big money (combination of voice, internet & MPLS delivered on one T1 with quality of service).

Here's some additional points that might help you.

1. Is it redundant? Yes, depending on how you design your network (we can help you of course) sites can network with each other over your wide area network for disaster recovery/ redundancy. Unlike the traditional point to point architecture where you might only be as strong as that single link. We helped a huge national company with a migration from point to point and frame relay to MPLS. The big reason was with so many sites there was an outage almost every day. The network was designed with redundancy as the main driver.

2. Does it work as well? It depends who you ask. Are you talking to a salesman? He will say yes. Let me give you my "consultant" opinion. It works ALMOST as well but there are so many benefits to MPLS that typically motivate a customer to change. For example, if you have Quality of Service (QoS) sensitive applications running accross your WAN then you should consider MPLS. MPLS is a private networking technology similar to the concept of Frame Relay in that it is delivered in the "cloud". The primary difference with MPLS is that you can purchase quality of service for applications across your WAN. During the provisioning process the carrier (or your agent-wink wink) will interview you in order to determine which appications are important to your business, they will then build a QoS template to service these applications on your WAN. These applications will be given priority over all other traffic in times of peak load. MPLS is by far the most costly solution between Frame Relay, VPN and MPLS .... but is the only technology that will support QoS!

But let's put the salesman aside and remember one thing. With MPLS we are using the carrier's private network which is infinitely better than creating your own VPN. But because of some "overhead" and the belief that all carriers over-subscribe somewhat I am convinced that it's ALMOST as good.

So if it's almost as good would it be worth migrating if you could enjoy cost savings & redundancy??? Maybe. But these are the things that are making MPLS the hot ticket now.

3. Does this work well with VOIP? Sure. You can get QoS like I stated above.

MPLS is an IP-based framing technology (at OSI layer 3) that inherently meshes your WAN (this is the redundancy you refer to above). MPLS has a feature called QoS or quality of service. This feature allows both your CPE router and the carrier's network to prioritize data based upon your settings or preferences (carrier's level of support of QoS can be broad) and gives you more "bang for your buck" with the bandwidth that you select for the local loop going to each office. MPLS is made for VoIP like RC Cola is made for Moonpies. Because true "toll quality" VoIP requires prioritization across a carrier network, you (or your provider) can tag VoIP traffic with high priority to easily address the jitter and latency sensitivity inherent in the service.

The other huge advantage you have is that you can add locations with a simple routing table update and maintain a fully-meshed architecture, where with Point to Point circuits, you would have had to add a separate circuit to each location you want to interconnect, making MPLS more and more cost friendly the more locations you add.

Finally, MPLS allows you (or your carrier) to configure network objects (such as servers, VPN concentrators, and Network-Based Firewalls) as nodes on your MPLS network. For instance, with a properly deployed Network Based Firewall, you can provide all of your locations with an internet connection over your MPLS network that doesn't rely on a single location to aggregate the traffic. Some carriers even offer redundant firewalls, meaning that you have redundant Internet connections fully meshed giving you more potential up-time in the case of a single failure on your network.

What do you need to consider? In my experience, the biggest things to keep in mind are:

- Stay away from MPLS enabled Frame/ATM networks with committed access rates (CAR), this committed access rate is often a lower bandwidth than your local loop bandwidth, which can degrade your quality and quantity of bandwidth across a carrier's network (its always in the fine print).

- QoS at the "Edge" and across the "Core" - choose a carrier with both.

- QoS recognition across the carrier network - some carriers will allow customers to mark packets with priority, but will not recognize and uphold that priority, don't fall into this trap.

- SLA guarantees - be sure to choose a carrier that provides acceptable service level agreements for the type of service you plan to push across your network

- Customer Service and dedicated sales rep - you want someone you can reach out to with questions that you can trust - this is the most difficult thing to find.

For FREE assistance designing the right MPLS configuration for your network .... AND sourcing the most cost effective provider ..... take advantage of the help available via:

MPLS Networks

Labels: , ,